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In this paper we study the effect of a fluctuating gap in mono- and bilayer graphene, created by a symmetry-
breaking random potential. We identify a continuous symmetry for the two-particle Green’s function which is
spontaneously broken in the average two-particle Green’s function and leads to a massless fermion mode.
Within a loop expansion it is shown that the massless mode is dominated on large scales by small loops. This
result indicates diffusion of electrons. Although the diffusion mechanism is the same in mono- and in bilayer
graphene, the amount of scattering is much stronger in the latter. Physical quantities at the neutrality point,
such as the density of states, the diffusion coefficient, and the conductivity, are determined by the one-particle
scattering rate. All these quantities vanish at a critical value of the average symmetry-breaking potential,
signaling a continuous transition to an insulating behavior.
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I. INTRODUCTION

Graphene is a single sheet of carbon atoms, where the
latter form a honeycomb lattice. Graphene as well as a stack
of two graphene sheets �i.e., a graphene bilayer� are semi-
metals with remarkably good conducting properties.1–3 These
materials have been experimentally realized with external
gates, which allow a continuous change in charge carriers.
There exists a nonzero minimal conductivity at the charge
neutrality point �NP�. Its value is very robust and almost
unaffected by disorder or thermal fluctuations.3–6

Many technological applications of graphene require an
electronic gap to construct switching devices. A first step in
this direction has been achieved by recent experiments with
hydrogenated graphene7 and gated bilayer graphene.8–10

These experiments take advantage of the fact that the break-
ing of a discrete symmetry of the lattice system opens a gap
in the electronic spectrum at the Fermi energy. A symmetry-
breaking potential �SBP� is a staggered potential in the case
of a monolayer, which breaks the sublattice symmetry of the
honeycomb lattice, or a gate potential that distinguishes be-
tween the two layers in the case of bilayer graphene, where
the latter breaks the symmetry between the layers. With this
opportunity, one enters a new field, where one can switch
between conducting and insulating regimes of a two-
dimensional material, either by a chemical process �e.g., oxi-
dation or hydrogenation� or by applying an external electric
field.11

The opening of a uniform gap destroys the metallic state
immediately. Thus the conductivity of the material would
drop from a finite value of order e2 /h directly to zero. In a
realistic system, however, the gap may not be uniform after
turning on the SBP. This means that only locally the material
becomes insulating, whereas in other regions of the sample it
is still metallic. The situation can be compared with a clas-
sical random network of broken and unbroken bonds. The
conductivity of such a network is nonzero as long as there is
a percolating cluster of unbroken bonds. In such a system the
transition from conducting to insulting behavior is presum-
ably a second-order percolation transition.12

Disorder in mono- and bilayer graphene has been the sub-
ject of a number of recent numerical studies13,14 and analytic

calculations.15–17 The results can be summarized by the state-
ment that chiral-symmetry preserving disorder provides de-
localized states whereas a chiral-symmetry breaking scalar
potential disorder leads to Anderson localization, even at the
NP. This breaks the chiral symmetry but still allows for de-
localized states at the NP.17,18 In contrast to chiral-symmetry
preserving disorder, a random SBP reduces the minimal con-
ductivity and can even lead to an insulating behavior.

In this paper an approach will be employed that elimi-
nates a part of the complexity of the tight-binding model by
focusing on continuous symmetries and corresponding spon-
taneous symmetry breaking. This allows us to identify a
massless mode in the system with a randomly fluctuating
SBP. Using a loop expansion we study the scaling behavior
of the model and derive a diffusion propagator for the
asymptotic behavior on large scales. Our result implies a
relation between the average two-particle Green’s function
and the product two average one-particle Green’s functions
in self-consistent Born approximation. This is similar to the
solution of the Bethe-Salpeter equation, a self-consistent
equation for the average two-particle Green’s function
�Cooperon�.19–24 In addition to the latter we are also able to
control the scaling behavior of all higher order terms in the
loop expansion.

Our approach provides also information about the effect
of symmetry-breaking terms. It turns out that the latter create
a finite length scale Ldiff, such that diffusion breaks down for
length scales L larger than Ldiff. Another reason for the
breakdown of diffusion is a vanishing spontaneous symmetry
breaking. This happens when the average value of the SBP
exceeds a critical value. In this case there is no drop of the
conductivity but a continuous decay to zero, depending on
the fluctuations of the SBP.

This paper is organized as follows. In Sec. II the model
and functional-integral representation of the Green’s func-
tions are introduced. The symmetries of the model are dis-
cussed in Sec. III. Then an effective functional integral is
constructed for the average two-particle Green’s function
�Sec. IV� and a saddle-point approximation is employed
�Sec. IV A�. The invariance of the saddle-point equation of
Sec. IV A under a continuous symmetry transformation re-
quires the integration over a saddle-point manifold. This is
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discussed in detail in Sec. V, which includes the loop expan-
sion �Sec. V A�. The results of the loop expansion and its
consequences for the transport properties in graphene are dis-
cussed in Sec. VI. Finally, we conclude with a summary of
our results in Sec. VII.

II. MODEL

Quasiparticles in monolayer graphene �MLG� or in bi-
layer graphene �BLG� are described in tight-binding approxi-
mation by a nearest-neighbor hopping Hamiltonian,

H = − �
�r,r��

tr,r�cr
†cr� + �

r

Vrcr
†cr + H.c., �1�

where cr
† �cr� are fermionic creation �annihilation� operators

at lattice site r. The underlying lattice structure is either a
honeycomb lattice �MLG� or two honeycomb lattices with
Bernal stacking �BLG�.11,25 There is an intralayer hopping
rate t and an interlayer hopping rate t� for BLG. Vr is either
a staggered potential �MLG� with Vr=m on sublattice A and
Vr=−m on sublattice B, or it is a biased gate potential in
BLG that is Vr=m �Vr=−m� on the upper �lower� graphene
sheet. These potentials obviously break the sublattice sym-
metry of MLG and the symmetry between the two layers in
BLG, respectively. A staggered potential can be the result of
chemical absorption of other atoms in MLG �e.g., oxygen or
hydrogen7�. The potential in BLG has been realized as an
external gate voltage, applied to the two layers of BLG.8 A
consequence of the symmetry breaking is the formation of a
gap �g=m in both systems: the spectrum of MLG consists of
two bands with dispersion,

Ek = � �m2 + �k
2, �2�

where

�k
2 = t2�3 + 2 cos k1 + 4 cos�k1/2�cos��3k2/2�� �3�

for lattice spacing a=1. The spectrum of BLG consists of
four bands11 with two low-energy bands,

Ek
−�m� = � ��k

2 + t�
2 /2 + m2 − �t�

4 /4 + �t�
2 + 4m2��k

2 �4�

and two high-energy bands

Ek
+�m� = � ��k

2 + t�
2 /2 + m2 + �t�

4 /4 + �t�
2 + 4m2��k

2. �5�

The spectrum of the low-energy bands has nodes for m=0
where Ek

−�0� vanishes. These nodes are the same as those of
a single layer. For small gating potential we can expand
Ek

−�m� under the square root near the nodes and get

Ek
−�m� 	 � �m2 + Ek

−�0�2

with the same gap as in MLG.
The two bands in MLG and the two low-energy bands in

BLG represent a spinor-1/2 wave function. This allows us to
expand the corresponding Hamiltonian in terms of Pauli ma-
trices � j as

H = h1�1 + h2�2 + m�3. �6�

Near each nodes the coefficients hj are22

hj = i� j�MLG�, h1 = �1
2 − �2

2, h2 = 2�1�2�BLG� ,

�7�

where ��1 ,�2� is the two-dimensional �2D� gradient.
Neither in MLG nor in BLG the potential is uniform. The

reason in the case of MLG is that fluctuations appear in the
coverage of the MLG by additional noncarbon atoms. In the
case of BLG it is crucial that the graphene sheets are not
planar but create ripples.26–28 As a result, electrons experi-
ence a varying potential Vr along each graphene sheet, and m
in the Hamiltonian of Eq. �6� is random variable in space.
For BLG it is assumed that the gate voltage is adjusted at the
NP such that in average mr is exactly antisymmetric with
respect to the two layers: �m1�m=−�m2�m.

At first glance, the Hamiltonian in Eq. �1� is a standard
hopping Hamiltonian with random potential Vr. This is a
model frequently used to study the generic case of Anderson
localization.29 The dispersion, however, is special in the case
of graphene due to the honeycomb lattice: at low energies it
consists of two nodes �or valleys� K and K�.22,27 It is as-
sumed here that weak disorder scatters only at small momen-
tum such that intervalley scattering, which requires large mo-
mentum at least near the NP, is not relevant and can be
treated as a perturbation. Then each valley contributes sepa-
rately to transport, and the contribution of the two valleys to
the conductivity � is additive: �=�K+�K�. This allows us to
consider the low-energy Hamiltonian in Eqs. �6� and �7�,
even in the presence of randomness for each valley
separately. Within this approximation the term mr is a
random variable with mean value �mr�m= m̄ and variance
��mr− m̄��mr�− m̄��m=g�r,r�. The following transport calcula-
tions will be based entirely on the Hamiltonian of Eqs. �6�
and �7�. In particular, the average Hamiltonian �H�m can be
diagonalized by Fourier transformation and is

�H�m = k1�1 + k2�2 + m̄�3

for MLG with eigenvalues Ek= ��m̄2+k2. For BGL the av-
erage Hamiltonian is

�H�m = �k1
2 − k2

2��1 + 2k1k2�2 + m̄�3

with eigenvalues Ek= ��m̄2+k4.
Transport properties of the model can be calculated from

the Kubo formula. Here we focus on interband scattering
between states of energy � /2 and −� /2. This is related to
the zitterbewegung,30 which is a major contribution to trans-
port near the NP. The frequency-dependent conductivity then
reads15

�0��� = −
e2

2h
�2���−�/2
rk

2
��/2��m, �8�

where 
�E� is the Fourier transform of the wave function
under time evolution exp�−iHt�,


�E� � �
0

�

e�iE−��t
	�t��dt = �
0

�

e�iE−��te−iHtdt
	�0��

= − i�H − E − i��−1
	�0��

= − iG�− E − i��
	�0�� , �9�
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with the one-particle Green’s function G�z�= �H+z�−1. In
other words, the conductivity is proportional to a matrix el-
ement of the position operator rk �k=1,2� with respect to
energy functions from the lower and the upper bands. The
matrix element on the right-hand side is identical with the
two-particle Green’s function,

��−�/2
rk
2
��/2� = �

r

rk
2Tr2�Gr0�− �/2 − i��G0r��/2 + i��� .

With the identity H=−�nHT�n, where n=1 for MLG and n
=2 for BLG �cf. discussion in Sec. III�, the matrix element
also reads

��−�/2
rk
2
��/2� = − �

r

rk
2Tr2��nGr0

T ��/2 + i���n


G0r��/2 + i��� . �10�

A. Functional integral

The two-particle Green’s function on the right-hand side
of Eq. �10� can be expressed, before averaging, as a Gaussian
functional integral with two independent Gaussian fields, a
boson �complex� field �rk and a fermion �Grassmann� field

	rk �k=1,2� and their conjugate counterparts �̄rk and 	̄rk,
31

− Grr�,j j�
T �z�Gr�r,k�k�z� =� 	r�j�	̄rj�rk�̄r�k�


exp�− S0�z��D�	�D��� . �11�

S0�z� is a quadratic form of the four-component field �r
= ��r1 ,�r1 ,	r2 ,	r2�,

S0�z� = − i�
r,r�

�r · �Ĥ + z�r,r��̄r� �Im z 
 0� , �12�

where the extended Hamiltonian Ĥ=diag�H ,HT� of S0 acts in
the boson and in the fermion sector separately. The use of the
mixed field �r has the advantage that an extra normalization
factor for the integral is avoided. The matrix element in Eq.
�10� reads now

��−�/2
rk
2
��/2�

= �
j�k

�
r

rk
2��	0j	̄rj�rk�̄0k�0 − �− 1�n�	0j	̄rk�rj�̄0k�0�

= − �
j�k

�
r

rk
2���rk	̄rj	0j�̄0k�0 − �− 1�n��rj	̄rk	0j�̄0k�0� ,

�13�

with

�¯�0 =� . . .exp�− S0�z��D�	�D��� .

III. SYMMETRIES

Transport properties are controlled by the symmetry of the
Hamiltonian and of the corresponding one-particle Green’s

function G�i��= �H+ i��−1. In the absence of sublattice-
symmetry breaking �i.e., for m=0�, the Hamiltonian H
=h1�1+h2�2 has a continuous chiral symmetry

H → e��3He��3 = H �14�

with a continuous parameter �, since H anticommutes with
�3. The term m�3 breaks the continuous chiral symmetry.
However, the behavior under transposition hj

T=−hj for MLG
and hj

T=hj for BLG provides a discrete symmetry,

H → − �nHT�n = H , �15�

where n=1 for MLG and n=2 for BLG. This symmetry is
broken for the one-particle Green’s function G�i�� by the i�
term. To see whether or not the symmetry is restored for �
→0, the difference of G�i�� and the transformed Green’s
function −�nGT�i���n must be evaluated,

G�i�� + �nGT�i���n = G�i�� − G�− i�� . �16�

For the diagonal elements this is the density of states at the
NP ��E=0���0 in the limit �→0. Thus the order parameter
for spontaneous symmetry breaking is �0.

Equation �10� indicates that transport properties are ex-
pressed by the two-particle Green’s function G�i��G�−i��.
Each of the two Green’s functions, G�i�� and G�−i��, can be
considered as a random variable which are correlated due to
the common random variable mr. Their distribution is de-
fined by a joint distribution function P�G�i�� ,G�−i���. In
terms of transport theory, both the Green’s functions must be
included on equal footing. This is possible by introducing the
extended Green’s function,

Ĝ�i�� = 
G�i�� 0

0 G�− i��
� = 
H + i� 0

0 H − i�
�−1

. �17�

In the present case one can use the symmetry transformation
of H in Eq. �15� to write the extended Green’s function as

Ĝ�i�� = 
�0 0

0 − �0
�
�0 0

0 i�n
�



H + i� 0

0 HT + i�
�−1
�0 0

0 i�n
� .

The extended Hamiltonian Ĥ=diag�H ,HT� is invariant under
a global “rotation”

Ĥ → eŜĤeŜ = Ĥ, Ŝ = 
 0 ��n

���n 0
� �18�

with continuous parameters � and ��. The invariance is a

consequence of the fact that Ĥ anticommutes with S. The i�
term of the Green’s function also breaks this symmetry. For

���=−�2 /4 the diagonal element of Ĝ−eSĜeS is propor-
tional to the density of states �0. Thus, the continuous sym-
metry is spontaneously broken for �→0 if �0 is nonzero. In
this case there is a massless mode.

As a symmetry-breaking parameter, � generates a charac-
teristic response of the system with long-range correlations
when it is varied for �	0. This is reminiscent of a weak
external magnetic field in a �classical� ferromagnet, where
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the response to a change in the magnetic field creates a
power-law magnetic susceptibility near the critical point.
Moreover, if � is chosen as a space-dependent field �r, we
can vary it locally and obtain a space-dependent response in
form of correlation functions of the Green’s functions. This
allows us to study complex correlation functions by taking
local derivatives of the field �r.

Returning to the quadratic form in the action S0�z� of Eq.
�12�, we notice that after the rotation of the diag�H ,HT� with

eŜ off-diagonal block matrices are generated. These matrices
should have Grassmann elements in order to have a quadratic
form that has pairs of complex and pairs of Grassmann vari-
ables. Therefore, the parameters � and �� must be Grass-

mann variables: �=� and ��= �̄.

IV. AVERAGED MATRIX ELEMENTS

As an example, we need to consider the averaged matrix
element of rk

2 in Eq. �13�. Averaging Eq. �11� over the
Gaussian distribution of vr means replacing exp�−S0� by
�exp�−S0��m on the right-hand side of the equation. The
latter can be written again as an exponential function
�exp�−S0��m=exp�−S1�, where the new function S1 contains
also quartic terms of the field �,

S1 = − i�
r,r�

�r · �H0 + z�r,r��̄r� + g�
r

��r · �3�̄r�2. �19�

Then it is convenient to transform the integration variables
�Hubbard-Stratonovich transformation31� as


 �r�̄r �r	̄r

	r�̄r 	r	̄r

�→ Q̂r = 
Qr �r

�̄r − iPr
� , �20�

where Qr and Pr are symmetric 2
2 matrices and �r and �̄r
are 2
2 matrices whose elements are independent Grass-
mann variables. Now the correlation functions in Eq. �13�
can be rewritten as correlation functions in the new field Q̂r.
Then the matrix element reads

���−�/2
rk
2
��/2��m = −

1

g2 �
j�k

�
r

rk
2�����3�r,jk��̄�3�0,kj�2

− �− 1�n����3�r,jk��̄�3�0,jk�2� �21�

with

�. . .�2 =� . . .exp�− S2�z��D	D�Q̂�

and

S2�z� = �
r,r�

1

g
Trg�Q̂r

2� + ln�detg��Ĥ�m + z − 2�3Q̂�� . �22�

Trg is the graded trace

Trg�
A �

�̄ B
�� = Tr A − Tr B ,

Tr is the conventional trace, and detg is the graded
determinant,17

detg

A �

�̄ B
�� =

det�A�
det�B�

det�1 − �̄B−1�A−1�

=
det�A − �̄B−1��

det�B�
. �23�

A. Saddle-point approximation

The integration in Eq. �21� can be performed in saddle-
point approximation. The saddle point is obtained as the so-
lution of �S2=0. Assuming a solution of the form

Q̂0 = − i
�

2
�3 −

ms

2
�0, �24�

we obtain the parameters � and ms from the saddle-point
equation,

Q̂0 = g��Ĥ�m + z − 2�3Q̂0�rr
−1�3. �25�

A consequence of the symmetry discussed in Sec. III is that
for z=0 the saddle-point equation is invariant under the glo-

bal symmetry transformation Q̂0→ Û−1Q̂0Û, where Û=eŜ of
Eq. �18�. This transformation creates the saddle-point mani-
fold

Q̂r� = − i
�

2
�3Ûr

2 −
ms

2
�0, �26�

where Ûr is obtained from Eq. �18� by replacing the trans-
formation parameters � ���� by space-dependent Grassmann

variables �r ��̄r�, respectively. The form of Q̂r�, which is
dictated by the symmetry, implies for the action S2 on the
saddle-point manifold that �i� the quadratic term vanishes
and �ii� the remaining term becomes

S� = ln detg��Ĥ�m + ms�3 + z + i�Û2� . �27�

This action contains the symmetry-breaking field z. The ma-
trix element of Eq. �21� becomes

���−�/2
rk
2
��/2��m �

4�2

g2 �
r

rk
2��r�̄0�S� �28�

with

�¯�S� =� . . .e−S�D�Û� =� . . .e−S�D��� . �29�

There is no extra factor from the invariant integration mea-

sure when we replace D�Û� by D��� �cf. Appendix A�.

B. Evaluation of the scattering rate �

The saddle-point approximation of the average one-
particle Green’s function means

�G�z��m = ��H + z�−1�m � ��H�m + ms�3 + z + i��−1

= G0�z + i�� , �30�

which is often called self-consistent Born approximation.19
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The ansatz for a uniform saddle-point solution in Eq. �24�
leads to a shift of z as z→ i��� i�+z with

�� + iz = ��gI �31�

and a shift of the average mass m̄→ m̄+ms with

ms = − m̄gI/�1 + gI� . �32�

The integral I reads

I = 2� G0,11�i���d2k/�2��2/�i���

which is in the case of MLG

I 	
1

�
�

0

�

���2 + �m̄ + ms�2 + k2�−1kdk

=
1

2�
ln�1 +

�2

��2 + �m̄ + ms�2� �33�

and in the case of BLG

I 	
1

�
�

0

�

���2 + �m̄ + ms�2 + k4�−1kdk

=
arctan��2/���2 + �m̄ + ms�2�

2����2 + �m̄ + ms�2
	

1

4���2 + �m̄ + ms�2

�34�

for �	�.
A nonzero solution � for z=0 requires gI=1 in Eq. �31�,

such that ms=−m̄ /2 from Eq. �32�. Since the integrals I are
monotonically decreasing functions for large m̄, a real solu-
tion with gI=1 exists only for 
m̄
�mc. For both physical
systems, MLG and BLG, the solutions read

�2 = �mc
2 − m̄2���mc

2 − m̄2�/4, �35�

where the model dependence enters only through the critical
average parameter mc,

mc = � 2�

�e2�/g − 1
	 2�e−�/g �MLG�

g/2 �BLG�
� . �36�

mc is much bigger for BGL, a result that indicates that the
effect of disorder is much stronger in BLG. This is also re-
flected by the scattering rate at m̄=0 which is �=mc /2.

V. INTEGRATION OVER THE SADDLE-POINT
MANIFOLD

The integration weight exp�−S�� of the functional integral
in Eq. �29� reads according to Eq. �27�,

exp�− S�� = detg�H0 + i� + i�Û2�−1 �37�

with the nonlinear field

Û2 = e2Ŝ = 1 + 2Ŝ + 2Ŝ2

and H0= �Ĥ�m+ms�3. We notice that

1 + Ŝ + Ŝ2 = �1 − Ŝ�−1,

since Ŝl=0 for l�3. This enables us to rewrite the integra-
tion weight as

exp�S�� = detg�H0 + i� − i� + 2i��1 − Ŝ�−1�

= detg��1 − Ŝ��H0 + i� − i�� + 2i��detg�1 − Ŝ�−1

= detg�1 − Ŝ�H0 + i� − i���H0 + i� + i��−1�


detg�1 − Ŝ�−1, �38�

where we have used that detg�H0+ i�+ i��=1. This result is

remarkable because �i� Ŝ appears only linearly in the deter-
minants and �ii� the matrix in the second determinant is di-
agonal,

detg�1 − Ŝ� = �
r

�1 – 2�̄r�r� . �39�

With the expression

�Ĝ0 ª �H0 + i� − i���H0 + i� + i��−1

= 1 – 2i��H0 + i� + i��−1 � 1 – 2i�Ĝ0�i�� + ��� ,

we can write, using the definition of the graded determinant
in Eq. �23�,

exp�− S�� = detg�1 − Ŝ�Ĝ0�−1�
r

�1 – 2�̄r�r�

= det�1 − �̄�1�G0,11�1��G0,22�−1�
r

�1 – 2�̄r�r� .

�Ĝ0 depends on � and � and satisfies for n=1 �MLG� or n
=2 �BLG�,

�n�Ĝ0,11��,���n = �n�1 – 2i�G0,11�i� + i����n

= 1 + 2i�G0,22�− i� − i�� = �Ĝ0,22�− �,− �� .

This implies for the integration weight

exp�− S�� = det�1 − �̄h−�h+�−1�
r

�1 – 2�̄r�r� �40�

with h�=�G0,22��� , ���, whose Fourier components are

h� � �0 � 2i�G0,22��i� � i��

= �0 � �2i��nG0,11��i� � i����n

= �0 �
2i�

�� + ��2 + h1
2 + h2

2


��i�� + ���0 + �− 1�n�h1�1 − h2�2��

= �1 −
2��� + ��

�� + ��2 + h1
2 + h2

2��0

�
2i��− 1�n

�� + ��2 + h1
2 + h2

2 �− h1�1 + h2�2� . �41�

Equation �40� is probably the most compact representa-
tion of exp�−S��, and a corresponding simple visualization is
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that the lattice has isolated sites �due to �̄��0� or closed

random walks of h+ and h− pairs �due to �̄h−�h+�. The func-
tional integration in Eq. �29� can now be performed by ex-

panding the determinant det�1− �̄h−�h+�−1 of Eq. �40� in

powers of the Grassmann variables �r and �̄r. A nonzero
contribution to the integral requires that the entire lattice is

covered with products �r�̄r. This is quite different from the
corresponding functional integral with respect to complex
fields, where already a single term of the expansion gives a
nonzero contribution. Consequently, the expansion must be
organized in a specific way to control the integration over the
Grassmann variables. This can be done in terms of a loop
expansion of the action S� which is discussed in the next
section.

A. Loop expansion

Starting from the expression in Eq. �40�,

det�1 − �̄h−�h+�−1 = exp�− ln det�1 − �̄h−�h+�� ,

we can expand the exponent with trace terms of growing size
as

ln det�1 − �̄h−�h+� = − �
l�1

1

l
Tr���̄h−�h+�l�

= �
l�1

1

l
Tr��h−�h+�̄�l� . �42�

The trace terms can be visualized as closed polygons �loops�
on the lattice with alternating � and �̄ at the corners �cf. Fig.
1�a��, where each term is normalized by the number of cor-
ners of the loop l. Inserting this in the functional integral of
Eq. �29�, all the loops can contribute with the condition that

they cover partially the lattice with products �r�̄r. There are
many graphically equivalent coverages �but with different
values�, as can be seen in Fig. 1�b�: a square can either be a
product of four l=2 contributions or just one l=4 contribu-
tion. This equivalence raises the question for the contribu-

tion�s� to a given graph with highest weight in the functional
integral. A way to study this is a scaling analysis, where we
analyze the change in the loop-expansion terms under a
change in length scales. For this purpose it is convenient to
choose the Fourier representation

Tr��h−�h+�̄�l� =� . . .� Tr2�h−,k1
�k1−k2

h+,k2
�̄k2−k3

¯ h−,k2l−1
�k2l−1−k2l

h+,k2l
�̄k2l−k1

�d2k1 . . . d2k2l.

It should be noticed that there are only 2l−1 integrations that
affect the field � and its conjugate, namely k1−k2 ,k2
−k3 , . . . ,k2l−k1, since the sum of these variables gives zero.
The integration over the remaining 2lth variable affects only
the h’s. Using � j =kj −kj+1 with k2l+1=k1 we get

Tr��h−�h+�̄�l� =� C�1,. . .,�2l
��1

�̄�2
¯ ��2l−1

�̄�2l


���1 + . . . + �2l�d2�1 ¯ d2�2l �43�

with the coefficient

C�1,. . .,�2l
=� Tr2�h−,�1+¯+�2l+k1

h+,�2+¯+�2l+k1

¯ h−,�2l−1+�2l+k1
h+,�2l+k1

�d2k1. �44�

These integral expressions contribute with different weight
to the loop expansion of exp�−S��, depending on the number
of corners l. In order to analyze the weights we can use the
fact that � j as well as ��j

are integration variables in the
functional integral. This enables us to rescale them as

� j → s−1� j, ��j
→ s−��s�j

�45�

and use the integration symbols as before the rescaling. Then
the scaling behavior of the general loop-expansion term in
Eq. �43� is

� C�1,. . .,�2l
��1

�̄�2
¯ ��2l−1

�̄�2l
���1 + . . . + �2l�


d2�1 ¯ d2�2l → s2l�2+��s−2� Cs�1,. . .,s�2l
��1

�̄�2

¯ ��2l−1
�̄�2l

���1 + . . . + �2l�d2�1 ¯ d2�2l. �46�

Next, the contribution of Cs�1,. . .,s�2l
to the prefactor must be

determined. For l=1 we have �2=−�1 such that

� Tr2�h−,k1
�k1−k2

h+,k2
�̄k2−k1

�d2k1d2k2

=� ��1� Tr2�h−,k1
h+,−�1+k1

�d2k1�̄−�1
d2�1

�� ��1
C�1

�̄−�1
d2�1. �47�

This expression rescales as

a)

b)
r

r’

FIG. 1. �a� Elements of the loop expansion for the action S� and
�b� for the two-particle Green’s function �Grr��z�Gr�r�−z��m. The dot

corresponds with a simple factor �r�̄r from Eq. �39�, whereas the
loops with l corners correspond with the expansion term of order l
in Eq. �42�. Only an even number of corners can appear in the loop
expansion �a� and each site must be visited twice by line elements
in �b�, except for the end points r and r�, which are visited once.
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� �kCk�̄−kd
2k → s2+2�� �kCsk�̄−kd

2k ,

where Csk�C0+s2k2C0�. Now we choose �=−2 which gives
a prefactor 1 for the s2k2C0� term.

In general, for s�1 the rescaling of the wave vector in
Eq. �45� has the effect that the integration is shifted to larger
values in � j �i.e., to shorter scales in real space�. This is
compensated by a prefactor in front of the integral. A pref-
actor smaller than 1 means that the integral contributes more
on larger values of kj than on smaller values. In other words,
the corresponding loop contributes more to shorter length
scales than to larger ones. Since we are interested in large-
scale properties, terms with prefactors smaller than 1 are
asymptotically irrelevant for this regime. The scaling of the
coefficient

Cs�1,. . .,s�2l
	� Tr2�h−,s�1+¯+s�2l+k1

h+,s�2+¯+s�2l+k1

¯ h−,s�2l−1+s�2l+k1
h+,s�2l+k1

�d2k1

for l�2 can be studied by rescaling h�. Then we have for
each factor h�,s�j+¯+�2l+k1

h�,s�j+¯�2l+k1
= h�,k1

+ s�� j + ¯ + �2l�h�,k1
� + o�s2� .

�48�

such that

Cs�1,. . .,s�2l
	 C0 + s �

j1=1

2l

Cj1
� j1

+ ¯

+ sl �
j1,. . .,jl=1

2l

Cj1,. . .,jl�
n=1

l

� jn
+ o�s2l+1� .

Here it is important to notice that each � j becomes a gradient
term in real space, whereas a constant term in � j is diagonal
in real space. Therefore, at least every second factor � j �i.e.,
either �’s with j=1,3 , . . . ,2l−1 or j=2,4 , . . . ,2l� must be

present since otherwise multiple factors of �r or �̄r at the
same site r would appear which gives zero due to the fact
that these are Grassmann variables. Thus the leading behav-
ior of the right-hand side of Eq. �46� under scaling is

	s2l�2+��sl−2� C�1,. . .,�2l
��1

�̄�2
¯ ��2l−1

�̄�2l


���1 + . . . + �2l�d2�1 ¯ d2�2l.

For �=−2 this means that only terms with l�2 are relevant
for s	0. Moreover, the l=2 term vanishes since there are
two contributions that cancel each other. This can easily be
seen in real-space representation,

Tr�h−�h+�̄h−�h+�̄�

= �
r1,. . .,r4

Tr2�h−,r1−r2
h+,r2−r3

h−,r3−r4
h+,r4−r1

��r2
�̄r3

�r4
�̄r1

.

The leading nonvanishing term is of order s2. In this case,

according to the gradient expansion, every second term is
diagonal and reads,

Tr2�h−,0h+,r1−r3
h−,0h+,r3−r1

��r1
�̄r3

�r3
�̄r1

+ Tr2�h−,r1−r2
h+,0h−,r2−r1

h+,0��r2
�̄r2

�r1
�̄r1

.

After renaming the summation indices and exchanging of the
Grassmann factors in the first term we get

=�− Tr2�h−,0h+,r1−r2
h−,0h+,r2−r1

�

+ Tr2�h−,r1−r2
h+,0h−,r2−r1

h+,0���r2
�̄r2

�r1
�̄r1

.

Now we use the fact that h�=�0�0� ��1�1+�2�2� in Eq.
�41� and get from the sum of the two trace terms zero. This
result implies that the loop expansion is asymptotically
dominated by the term in Eq. �47� �i.e., the loop with two
corners� which give the propagator

�
r

e−iq·r��r�̄0� 	
1

− 2 + Cq
. �49�

Here Cq can be expanded in powers of q �cf. Appendix B� as

Cq = 2 −
4�2

g��
�� + Dq2� + o�q3�

with the diffusion coefficient

D ª −
g��

2

�2

�qk
2� Tr2�G0,22,k�� + ��G0,22,k−q�− � − ���d2k
q=0.

�50�

Thus the propagator in Eq. �49� describes diffusion on large
scales. The � term corresponds with the symmetry-breaking
parameter. The latter does not need to be a scalar but can be
any symmetry-breaking tensor in the Green’s function, pro-
vided it allows us to write the two-particle Green’s function
in the form of Eq. �17�.

The matrix element of Eq. �28� reads with these expres-
sions and the substitution �→ i� /2,

����/2
rk
2
�−�/2��m = −

�2

�qk
2

��

g
� 1

i�/2 + Dq2�
q=0

= − 8
��D

g�2 .

We can also use the definition of D in Eq. �50�, together with
Eq. �10�, to write

D =
g��

2
��i��

0 
rk
2
�−i��

0 � �51�

and

����/2
rk
2
�−�/2��m = −

��2

��/2�2 ��i��
0 
rk

2
�−i��
0 � , �52�

where 
�E
0� is the wave function of Eq. �9�, when the Hamil-

tonian is replaced by the translational-invariant Hamiltonian
H0. Moreover, the integration in Eq. �50� gives for �	� �cf.
Appendix C�,

DIFFUSION IN THE RANDOM GAP MODEL OF MONOLAYER… PHYSICAL REVIEW B 79, 195424 �2009�

195424-7



D =
ag��

�4��2 + m̄2��
�a = 1 for MLG, a = 2 for BLG� ,

�53�

which implies

����/2
rk
2
�−�/2��m 	 −

8a��2

�2�4��2 + m̄2��
. �54�

VI. DISCUSSION

All our results are obtained for the charge neutrality point
E=0, for mono- and for bilayer graphene. The main results
are given in Eqs. �49�, �52�, �51�, and �53�: Eq. �49� connects
the average two-particle Green’s function with the two-
particle Green’s function of the average Hamiltonian. A spe-
cial consequence is Eq. �52�, which describes a relation be-
tween a disorder-averaged matrix element and the
corresponding matrix element of the pure system. Equation
�51� connects the matrix element with the diffusion coeffi-
cient. And finally, Eq. �53� connects the diffusion coefficient
with the one-particle scattering rate �.

Density of states. The average density of states is propor-
tional to the diagonal element of the average one-particle
Green’s function ��H+ i��−1�m. The latter can be evaluated in
saddle-point approximation from Eq. �25� as

�G�i���m � G0�i� + i�� , �55�

where the parameters � �scattering rate� and ms are deter-
mined by the self-consistent �or saddle-point� conditions of
Eqs. �31� and �32�. We then obtain �0�� /2�g, where the
scattering rate � is a function of g and m̄, according to Eq.
�35�. The density of states has a semicircular form with re-
spect to m̄,

�0 �
�

2�g
=

1

4�g
�mc

2 − m̄2��mc
2 − m̄2� , �56�

where the radius of the semicircle mc is given in Eq. �36�.
Diffusion. Scattering by the random gap term leads to

diffusion, as explained in the loop expansion of Sec. V A.
The diffusion coefficient D in Eq. �53� depends only on ��.
This corresponds with the simple physical picture that diffu-
sion decreases with an increasing scattering rate. Diffusion
breaks down when the symmetry is broken by the parameter
�. This implies a maximal diffusion length Ldiff=�2D /�. The
scale Leff indicates that any symmetry-breaking term creates
a finite diffusion length which limits diffusion to systems of
linear size Leff. This length scale can be very large due to the
large diffusion coefficient D in MLG,

Ldiff 	
1

2��
�ge�/g

��
.

In the case of BLG, however, it is much smaller because of
the stronger scattering rate �=mc /2 of Eq. �36�,

Ldiff 	� 2

��
.

Matrix element. The averaged matrix element
����/2
rk

2
�−�/2��m is an indicator of Anderson localization
since it diverges if the localization length is infinite. Accord-
ing to Eq. �54�, the states 
���/2� are delocalized at �=0. On
the other hand, the states are localized for ��0 with a de-
creasing localization length as one goes away from the NP.
Such a behavior was also found for bond disorder in
analytic15 and in numerical studies.14

Relation between averaged and nonaveraged Green’s
functions. In general, the average two-particle Green’s func-
tion can be expressed by the function Cq through Eq. �49�.
Cq in Eq. �B2� is a function of the Green’s functions

G0�����, where the random Hamiltonian Ĥ is replaced by
the average Hamiltonian H0. Since the average Hamiltonian
is translational invariant, the function Cq can be easily cal-
culated. This relation between the average two-particle
Green’s function and the self-consistent two-particle Green’s
function

�
r

e−iq·rTr2��Gr0�− i��G0r�i���m� �
1

− 2 + Cq

can be considered as a generalization of the self-consistent
Born approximation of the one-particle Green’s function in
Eq. �55�. Like in the latter case, the averaging process leads
to a change in energies �→�� �i.e., a replacement of the
symmetry-breaking parameter by the scattering rate�. A con-
sequence for the matrix element is Eq. �52�, which means a
simple scaling relation between the average matrix element
and the matrix element of the average translational-invariant
Hamiltonian H0. �The scale ��, however, is not free but fixed
by the disorder average through the saddle-point Eq. �25�.�
This provides an interesting and useful relation between the
averaged and the nonaveraged Green’s functions. Moreover,
in the relation of the matrix elements there is an extra pref-
actor −��2 / �� /2�2. This is important for the transport prop-
erties since it provides the delocalization of states at �=0
and it cancels the factor �2 in the conductivity of Eq. �8�.
The relation in Eq. �52� can also be understood as a factor-
ization of the averaged matrix element into a product of a
power law �i.e., 	�−2� and a smooth scaling function
��2��i��

0 
rk
2
�−i��

0 �.
Conductivity. The conductivity of Eq. �8� is calculated

from the matrix element in Eq. �54� and gives

�0��� 	
4a��2

��4��2 + m̄2�
��mc

2 − m̄2�
e2

h
. �57�

It is remarkable that �� drops out for m̄=0 which gives a
frequency-independent result,

�0��� 	
a

�

e2

h
.

A frequency-independent conductivity was also found for a
random vector potential.15 In the absence of disorder a con-
stant ���� was found, with a different value though.32,33 The
difference is due the fact that the expression in Eq. �8� is
only a contribution due to interband scattering from the total
Kubo formula �for details cf. Ref. 15�.
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dc conductivity. For �	0 the parameter �� is replaced by
the scattering rate � of Eq. �36�. The resulting dc conductiv-
ity reads

�0�� 	 0� 	
4a�2

��4�2 + m̄2�
e2

h
=

a

�

1 −

m̄2

mc
2���mc

2 − m̄2�
e2

h
.

�58�

Our knowledge of the diffusion coefficient D in Eq. �53� and
the density of states �0 in Eq. �56� allows us to evaluate the
dc conductivity alternatively through the Einstein relation,

��� 	 0� � �D
e2

h
�

a

8�2
1 −
m̄2

mc
2���mc

2 − m̄2�
e2

h
.

This agrees with Eq. �58�, except for a constant factor.
It is important to notice that the conductivity at m̄=0 does

not depend on the variance g of the random SBP. This indi-
cates that this quantity is robust against random fluctuations
in graphene. In particular, we could have started from the
action in Eq. �19� and treated the interaction term in pertur-
bation theory in powers of g to obtain the same result. This
idea was indeed employed in Ref. 16 and gave the same
value for the minimal conductivity. However, it is not pos-
sible to obtain a nonzero critical value mc in the case of
MLG, since all orders of the expansion of mc in Eq. �36� give
zero. This is one of the reasons why we have not used the
perturbation theory in g here but the loop expansion of Sec.
V A.

VII. CONCLUSION

The physics of the random gap model is characterized by
a discrete symmetry of the Hamiltonian and a continuous
symmetry of the two-particle Green’s function. For the
disorder-averaged two-particle Green’s function the continu-
ous symmetry is represented by a fermionic degree of free-
dom. Since the symmetry is spontaneously broken, the re-
sulting massless fermion mode controls the properties on

large scales. An effective action is derived for the massless
fermion mode and a loop expansion is employed to extract
the dominant large-scale contribution. It is found that the
shortest loops are in control of the large scales, leading to
diffusion. An explicitly broken symmetry generates a finite
diffusion length Ldiff such that diffusion is possible only on
length scales less than Ldiff.

Although our models of mono- and bilayer graphene
share the same type of symmetries and symmetry breaking,
the quantitative properties are quite different since scattering
is much stronger in bilayer graphene �cf. Fig. 2�. For in-
stance, the diffusion coefficient D is very large for mono-
layer graphene, namely,

D � ge�/g

for average symmetry-breaking potential m̄=0 because the
low density of states at the neutrality point does not provide
much scattering. This means that transport in monolayer
graphene is practically ballistic if disorder is not too strong.
In the case of bilayer graphene, however, scattering is much
stronger because of a large density of states at the neutrality
point, leading to a constant diffusion coefficient D	2 /� for
m̄=0. This also implies a large diffusion length scale Ldiff for
monolayer graphene since Ldiff��D.

All physical quantities of our discussion �i.e., the average
density of states, the diffusion coefficient, and the matrix
element of the position operator� depend on the model pa-
rameters only through the one-particle scattering rate �. An
exceptional case is the conductivity for vanishing average
symmetry-breaking potential which is independent of the
model parameters at all and has the value e2 /�h for mono-
layer graphene and 2e2 /�h for bilayer graphene �up to a
factor 4 for spin and valley degeneracy�. This implies a
frequency-independent microwave conductivity. On the other
hand, an increasing average symmetry-breaking potential m̄
reduces continuously the conductivity as well as the diffu-
sion coefficient. The continuous behavior of the conductivity
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FIG. 2. Scattering rate � and diffusion coefficient D for m̄=0 in the case of monolayer graphene �full curves� and bilayer graphene
�dashed curves� versus the variance g of the random symmetry-breaking potential. The diffusion coefficient of bilayer graphene is so small
�D	2 /�� such that it cannot be distinguished from the g axis.
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with respect to gap opening is similar to a recent experimen-
tal observation by Adam et al.34
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APPENDIX A: INTEGRATION OVER THE NONLINEAR
FIELD

We consider the matrix expansion at fixed site r,

Q̂ = Q11 + Q12 + ¯ ,

where �Qij� is a basis for the matrix Q̂. In the integral

I1 =� f�Q11,11,Q12,12,Q21,12, . . .� ,

Q11,11 is replaced by the nonlinear term Q11,11+1
+Q12,12Q21,12 which is created by the diagonal matrix ele-

ments of Û2 from the saddle-point manifold. This leads to
the new integral

I2 =� f�Q11,11 + 1 + Q12,12Q21,12,Q12,12,Q21,12, . . .� .

An expansion in terms of the Grassmann variable
Q12,12Q21,12 gives

I2 =� f�Q11,11 + 1,Q12,12,Q21,12, . . .�

+� Q12,12Q21,12f��Q11,11 + 1,Q12,12,Q21,12, . . .�

The second term vanishes at the Q11,11 integration bound-
aries. Moreover, the shift in the first term by 1 can be re-
moved, since the integration of Q11,11 goes from −� to �.
This gives

I2 =� f�Q11,11,Q12,12,Q21,12, . . .� = I1.

APPENDIX B: DIFFUSION PROPAGATOR

Cq is defined in Eq. �44�,

Cq =� Tr2�h−,kh+,k−q�d2k

=� Tr2��0 − 2i�G0,22,k�i� + i���


��0 + 2i�G0,22,k−q�− i� − i���d2k

=� �2 + 2i�Tr2�G0,22,k−q�− i� − i�� − G0,22,k�i� + i���

+ 4�2Tr2�G0,22,k�i� + i��G0,22,k−q�− i� − i����d2k

= 2 +� �2i�Tr2�G0,22,k−q�− i� − i�� − G0,22,k�i� + i���

+ 4�2Tr2�G0,22,k�i� + i��G0,22,k−q�− i� − i����d2k ,

�B1�

since the k integral is normalized. The Green’s function reads

G0,22,k�i� + i�� = −
1

�� + ��2 + h1
2 + h2

2 �i�� + �� − h1�1 + h2�2� .

Using the saddle-point Eq. �25� with ��=�+�, we have

� = � igTr2�G0,22,rr��i���� .

This implies

Tr2�G0,22,rr�− i��� − G0,22,rr�i���� = 2i�/g ,

such that

Cq = 2 −
4�2

g
+ 4�2� Tr2�G0,22,k�i���G0,22,k−q�− i����d2k .

�B2�

The second term can be expanded in powers of q,

Cq = 2 −
4�2

g
+ 4�2� Tr2�G0,22,k�i���G0,22,k�− i����d2k

+ 2�2qk
2 �2

�qk
2� Tr2�G0,22,k�i���G0,22,k−q�− i����d2k
q=0

+ o�q3� . �B3�

Since G0 satisfies the following relations:

G0�i���G0�− i��� = �i�� + h0�−1�− i�� + h0�−1 = ���2 + h0
2�−1

and

G0�i��� − G0�− i��� = �i�� + h0�−1 − �− i�� + h0�−1

= − 2i�����2 + h0
2�−1,

we obtain

Tr2G0�i���G0�− i��� =
i

2��
Tr2�G0�i��� − G0�− i���� .

This allows us to write for the third term in Eq. �B3�,

4�2� Tr2�G0,22,k�i���G0,22,k�− i����d2k

= 4�2Tr2�G0,22�i���G0,22�− i����rr

= 2i
�2

��
Tr2�G0,22�i��� − G0,22�− i����rr = 4

�3

g��
.

This gives
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Cq = 2 −
4�2

g��
�� − qk

2g��

2

�2

�qk
2� Tr2�G0,22,k�i���


G0,22,k−q�− i����d2k
q=0� + o�q3� .

Then the prefactor D of the qk
2 term reads

D ª −
g��

2

�2

�qk
2� Tr2�G0,22,k�i���G0,22,k−q�− i����d2k
q=0.

APPENDIX C: EVALUATION OF THE MATRIX ELEMENT
OF ��±i��

0
‹

The matrix element with respect to the average Hamil-
tonian �H�m of MLG gives

��i��
0 
rk

2
�−i��
0 � = 4���2 + m̄2/4��

0

� k

���2 + m̄2/4 + k2�3

dk

2�

	
1

2����2 + m̄2/4�

for �	�, and of BLG

��i��
0 
rk

2
�−i��
0 � = 16���2 + m̄2/4��

0

� k3

���2 + m̄2/4 + k4�3

dk

2�

	
1

����2 + m̄2/4�
.
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